

Bootstrap test for variance components in non nonlinear mixed effects models

Tom Guédon ¹ Charlotte Baey ² Estelle Kuhn ¹

¹INRAE, France. ²Univ. Lille, France.

Introduction

Context:

- hypothesis testing under nonstandard conditions
- usual MLE asymptotic theory not applicable

Motivations: build a procedure

- non asymptotic
- applicable to any type of mixed-effect models (linear, nonlinear)

Mixed effects models

We consider the following nonlinear mixed effects model

$$\begin{cases} y_{ij} = g(x_{ij}, \beta, \Lambda \xi_i) + \varepsilon_{ij} & \varepsilon_{ij} \sim \mathcal{N}(0, \sigma^2) \\ \xi_i & \sim \mathcal{N}(0, I_p) \end{cases}, \tag{1}$$

- y_{ij} : the jth response of the ith individual $(i = 1, ..., N; j = 1, ..., J_i)$
- β : vector of fixed effects
- x_{ij} : known covariates
- Λ : lower triangular matrix with nonnegative diagonal coefficients
- $(\xi_i)_i$ and $(\varepsilon_{ij})_{ij}$ are mutually independent
- $y_i = (y_{ij})_{j=1...J_i} \sim f_i(y_i; \theta), y_i | \xi_i \sim f_i(y_i; \xi_i, \theta), \xi_i \sim \pi(\xi_i)$

Variance components testing

Objective: Test the nullity of the last r variances of the scaled random effects $(\Lambda \xi_i)_i$.

$$H_0: \quad \Lambda = \begin{pmatrix} \Lambda_1 & 0 \\ 0 & 0 \end{pmatrix} \qquad H_1: \quad \Lambda = \begin{pmatrix} \Lambda_1 & 0 \\ \Lambda_{12} & \Lambda_2 \end{pmatrix}$$

Likelihood ratio test statistic (Irt):

$$\operatorname{Irt}(y_{1:N}) = -2 \left(\sup_{\theta \in \Theta} \quad l(\theta; y_{1:N}) - \sup_{\theta \in \Theta_0} \quad l(\theta; y_{1:N}) \right).$$

- Θ: unrestricted parameter space
- Θ_0 : restricted parameter space (under H_0)
- $l(\theta; y_{1:N})$: log marginal likelihood

$$l(\theta; y_{1:N}) = \sum_{i=1}^{N} \log\{f_i(y_i; \theta)\} = \sum_{i=1}^{N} \log\{\int f_i(y_i; \xi_i, \theta) \pi(\xi_i) d\xi_i\}$$

Proposed test procedure

Shrinked parametric bootstrap for variance components testing

- 1: Input: $c_N > 0$, $B \in \mathbb{N}^*$, $0 < \alpha < 1$
- 2: **Set:** $\beta_N^* = \hat{\beta}_N$, $\Lambda_N^* = \hat{\Lambda}_N$, and $\sigma_N^{*\,2} = \hat{\sigma}_N^2$
- 3: **Set:** $\Lambda_{2,N}^* = \Lambda_{12,N}^* = 0$
- 4: Set: $[\Lambda_{1,N}^*]_{mn}=[\hat{\Lambda}_{1,N}]_{mn}\mathbb{1}\left([\hat{\Lambda}_{1,N}]_{mn}>c_N\right)$
- 5: for $b=1,\ldots,B$ do
- 6: for $i = 1, \dots, N$ do
- 7: draw independently $\varepsilon_i^{*,b} \sim \mathcal{N}(0, \sigma_N^{*\,2}I_{J_i})$ and $\xi_i^{*,b} \sim \mathcal{N}(0, I_p)$
- build the ith value of the bth bootstrap sample $y_i^{*,b}=g(x_i,\beta_N^*,\Lambda_N^*\xi_i^{*,b})+\varepsilon_i^{*,b}$
- compute the likelihood ratio statistic $\operatorname{Irt}(y_{1:N}^{*,b})$
- 10: end for
- 11: end for
- 12: Compute the bootstrap p-value as $p_{boot} = \frac{1}{B} \sum_{b=1}^{B} \mathbb{1} \left(\operatorname{Irt}(y_{1:N}^{*,b}) > \operatorname{Irt}(y_{1:N}) \right)$
- 13: Reject H_0 if $p_{boot} < \alpha$

Theoretical issues

Boundary issue: $\Lambda_2 = 0 \notin \mathring{\Theta}$ Singularity issue: vanishing score

Example of a linear model with one random effect:

$$\begin{cases} y_{ij} = \lambda \xi_i + \varepsilon_{ij} & \varepsilon_{ij} \sim \mathcal{N}(0, \sigma^2) \\ \xi_i \sim \mathcal{N}(0, 1) \end{cases},$$

$$\frac{\partial l(\theta; y_{1:N})}{\partial \lambda}|_{\lambda=0} = \sum_{i=1}^{N} f_i(y_i; \theta)^{-1} \frac{\sum_{j=1}^{J} y_{ij}}{\sigma^2} \int \xi_i \pi(\xi_i) d\xi_i = 0$$

- singularity and boundary issues: sources of inconsistency of the bootstrap procedure
- nuisance parameters: issues cited above occurring at unknown locations

Theoretical results

Notations: $\theta = (\lambda, \delta, \psi)$

True value: $\theta_0 = (0, 0, \psi_0)$

<u>Theorem:</u> Under regularity conditions, if θ_N^* is chosen such that $\theta_N^* \in \Theta_0$, $\theta_N^* = \theta_0 + o_p(1)$ and $N^{1/4}\delta_N^* = o_p(1)$ then as $N \to +\infty$, it holds in probability that

$$pr^*\{\operatorname{Irt}(y_{1:N}^*) \leq t\} \longrightarrow pr(\operatorname{Irt}_{\infty} \leq t).$$

How to choose the bootstrap parameter $\theta_N^* = (\lambda_N^*, \delta_N^*, \psi_N^*)$?

Proposition: Let $(c_N)_{N\in\mathbb{N}}$ be a sequence such that $\lim_{N\to+\infty} c_N = 0$ and $\lim_{N\to+\infty} N^{\frac{1}{4}}c_N = +\infty$. Let $\hat{\theta}_N = (\hat{\psi}_N, \hat{\delta}_N, \hat{\lambda}_N)$ be the MLE of θ_0 .

Under regularity conditions if

- $\forall k = 1, ..., d_{\psi} \ \psi_{N,k}^* = \hat{\psi}_{N,k} \ \mathbb{1}(\hat{\psi}_{N,k} > \mathbf{c}_N)$
- $\forall k = 1, ..., d_{\delta} \ \delta_{N,k}^* = \hat{\delta}_{N,k} \ \mathbb{1}(\hat{\delta}_{N,k} > c_N)$
- $\lambda_N^* = 0_{d_\lambda}$

then θ_N^* verifies the hypothesis of the main theorem.

Simulations study

Small sample properties:

Test that one variance is null in a linear model with two random effects

Lev	evel	N = 10		N = 20		N = 30		N = 40		N = 100		max
α	ľ.	boot	asym	boot	asym	boot	asym	boot	asym	boot	asym	Sd
19	%	1.14	0.68	0.98	0.68	1.20	0.94	0.74	0.70	0.86	0.72	0.15
5%	%	5.20	3.64	5.22	3.82	5.74	4.30	4.86	3.94	5.26	4.50	0.33
10°	%	10.72	7.16	10.80	7.98	10.30	8.40	10.80	8.44	10.34	8.86	0.44

Table 1. Empirical levels (in %) for K=5000 simulated datasets and B=500

Test that one variance is null in a nonlinear model with three random effects (logistic model)

Level α	boot	asym	max so
1%	0.80	0.80	0.28
5%	5.10	3.60	0.70
10%	10.30	7.00	0.96

Table 2. Empirical levels (in %) for K=1000 datasets of size N=40 and B=300.

Effect of the shrinkage in presence of nuisance parameters:

Test that one variance is null in a linear model with 8 random effects

Figure 1. Empirical levels (in %) for K=2500 datasets of size N=30 and B=300

Conclusion

Contributions: a test procedure

- with good small samples properties
- robust to nuisance parameters
- applicable to any type of mixed effects models

Perspectives:

- choice of c_N
- efficient computation of $\operatorname{Irt}(y_{1:N})$

References

- D. W. Andrews. Inconsistency of the bootstrap when a parameter is on the boundary of the parameter space. *Econometrica*, pages 399–405, 2000.
- [2] C. Baey, P.-H. Cournède, and E. Kuhn. Asymptotic distribution of Irt statistics for variance components in nonlinear mixed effects models. *Computational Statistics & Data Analysis*, 135:107–122, 2019.
- [3] G. Cavaliere, H. B. Nielsen, and A. Rahbek. On the consistency of bootstrap testing for a parameter on the boundary of the parameter space. *Journal of Time Series Analysis*, 38(4):513–534, 2017.

