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Tom Guédon1*, Charlotte Baey2 and Estelle Kuhn1
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Abstract
Computing ratios of normalizing constants plays an important role in statisti-
cal modeling. Two important examples are hypothesis testing in latent variables
models, and model comparison in Bayesian statistics. In both examples, the
likelihood ratio and the Bayes factor are defined as the ratio of the normal-
izing constants of posterior distributions. We propose in this article a novel
methodology that estimates this ratio using stochastic approximation principle.
Our estimator is consistent and asymptotically Gaussian. Its asymptotic vari-
ance is smaller than the one of the popular optimal bridge sampling estimator.
Furthermore, it is much more robust to little overlap between the two unnormal-
ized distributions considered. Thanks to its online definition, our procedure can
be integrated in an estimation process in latent variables model, and therefore
reduce the computational effort. The performances of the estimator are illus-
trated through a simulation study and compared to two other estimators : the
ratio importance sampling and the optimal bridge sampling estimators.

Keywords: ratio of normalizing constants, Monte Carlo methods, Stochastic
approximation, marginal likelihood estimation
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1 Introduction
In statistical modeling, comparing models often hinges on estimating ratios of inte-
grals, which frequently serve as normalizing constants of posterior distributions. For
example in latent variables models, such ratios emerge when choosing between two
nested models via the likelihood ratio test. Each marginal likelihood represents the
normalizing constant of the posterior distribution density of the latent variables given
the data. However, computing marginal likelihoods defined as integrals becomes infea-
sible when the relationship between observed data and latent variables is complex.
Similarly, in Bayesian statistics, model selection can be performed by comparing evi-
dences (or marginal likelihoods) between competing models through the Bayes factor.
In this setting, marginal likelihoods serve as the normalizing constants of the poste-
rior distribution of the parameters given the data. Therefore, being able to efficiently
compute ratios of normalizing constants is of significant practical interest.

This topic has motivated many fields of applications such as phylogenetics (Lar-
tillot and Philippe, 2006), astrophysics (Russel et al., 2018), psychology (Annis et al.,
2019) or chemical physics (Shirts and Chodera, 2008). To tackle this task one can
either separately estimate the two likelihoods, or directly compute the ratio. As far
as marginal likelihood estimation is concerned, several classical methods exist such as
importance sampling (Robert and Casella, 1999), the harmonic mean estimator (New-
ton and Raftery, 1994) or the generalized harmonic mean estimator (Gelfand and
Dey, 1994), using samples from the posterior distributions. It has been shown that
those methods are often particular cases of estimators used to directly compute ratios
of normalizing constants such as Bridge sampling (Meng and Wong, 1996) and ratio
importance sampling (Chen and Shao, 1997b), both first introduced in the physics lit-
erature by respectively Bennett (1976) and Torrie and Valleau (1977). Gronau et al.
(2017) highlights that the Bridge sampling estimator is superior to both the impor-
tance sampling and the general harmonic mean estimators, as it is more robust to the
choice of the proposal distribution. However, its performance deteriorates as the over-
lap between the two densities associated with the normalizing constants decreases.
To circumvent this issue, refinements were proposed in Meng and Schilling (2002)
and Wang et al. (2022). They rely on a modification of the samples and their associ-
ated densities in order to increase the overlap between the densities. However, these
refinements require some knowledge of the distributions under consideration, making
the approach less attractive for practitioners. The optimal ratio importance sampling
estimator presents the smallest asymptotic variance among the estimators mentioned
here. However, the optimal scheme is not tractable in practice, which might explain
why it is not often considered in the literature. Several other refined methods have
been developed in the last decades, based on intermediate distributions that create
a path between the two distributions. We can mention for example annealed impor-
tance sampling (Neal, 2001), sequential Monte Carlo (Del Moral et al., 2006), path
sampling (Gelman and Meng, 1998) (or thermodynamic integration), stepping stone
sampling (Xie et al., 2011) and generalized stepping stone sampling (Fan et al., 2011).
These methods received a lot of interest and are presented and reviewed for instance
in Friel and Wyse (2012) and more exhaustively in Llorente et al. (2023). However,
most of these schemes can be seen as refinements of elementary methods to compute
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ratios of normalizing constants presented in Chen and Shao (1997b). For example,
path sampling is an extension of Bridge sampling (Gelman and Meng, 1998), and step-
ping stone sampling is an extension of the pre-umbrella identity using intermediate
power posteriors distributions.

We propose here a new approach to calculate ratios of normalizing constants based
on a stochastic approximation algorithm. Our procedure is also related to ratio impor-
tance sampling, and is therefore called Stochastic Approximation of Ratio Importance
Sampling (SARIS). It benefits from the different refinements available in these two
fields. After showing that estimating a ratio of normalizing constants is equivalent
to finding the root of a function defined as an expectation, we develop an iterative
stochastic approximation scheme to compute this root. We show that the sequence
generated by the proposed algorithm converges almost surely towards the targeted
ratio. The main advantage of our approach is that, thanks to its iterative construc-
tion, there is no need to fix the computational effort ahead since the procedure can
be stopped once a convergence criterion has been reached. We also express the opti-
mal proposal distribution in terms of asymptotic variance using convergence results
from stochastic approximation theory. Moreover our method allows to reach the same
asymptotic variance as the theoretical one of the optimal ratio importance sampling
estimator.

This paper is organized as follows: the next section describes the context and the
objective and gives a quick review of existing methods. Section 3 presents the pro-
posed SARIS procedures and studies their theoretical properties. Section 4 is dedicated
to algorithms using solely samples from both distributions involved in the targeted
ratio. An extension for the simultaneous estimation of model parameters and like-
lihood ratio test statistic in latent variables models is also proposed. Section 5 is
dedicated to numerical experiments and practical guidelines. We conclude and discuss
the perspectives in Section 6. The proofs are postponed to the appendix.

2 Ratios of normalizing constants
In this section we introduce ratios of normalizing constants, the notations and their
uses in statistics. We illustrate and motivate our purpose through two concrete exam-
ples: the likelihood ratio test statistic in latent variables models and the Bayes factor
in Bayesian statistics.

2.1 Statistical setting and objective
Let d be a positive integer and µ a σ-finite positive Borel measure on a subspace
Z of Rd. Assume that f0 and f1 are two positive integrable Borel functions on Z
such that c0 =

∫
Z f0(z)µ(dz) > 0 and c1 =

∫
Z f1(z)µ(dz) > 0. We assume that

these normalizing constants c0 and c1 are unknown and introduce the two probability
densities with respect to µ denoted by p0 and p1 defined for i ∈ {0, 1} and for all z in
Z by

pi(z) = fi(z)
ci

.
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The objective is to estimate the ratio r∗ of normalizing constants defined as:

r∗ = c0

c1
=
∫

Z f0(z)µ(dz)∫
Z f1(z)µ(dz)

. (1)

We first motivate our contribution by two practical examples which require the
computation of such ratios.
Example 1 (computation of likelihood ratio test statistic in latent variables
model). Let us consider a general latent variables model where the observed variable
is given by the random variable Y , taking values in Y and the latent variable by Z,
taking values in Z. We denote by y the observation of Y . We assume that the random
vector (Y, Z) follows a parametric distribution with density fθ parameterized by θ ∈ Θ.
The objective is to test the hypotheses:

H0 : θ ∈ Θ0 against H1 : θ ∈ Θ1,

where Θ0 ⊂ Θ1 ⊂ Θ. A natural popular test is the likelihood ratio test (Van der Vaart,
2000) which statistic is defined by:

LR = −2 log
(

L(θ̂0; y)
L(θ̂1; y)

)
,

and where the marginal likelihood L(θ; y) and the maximum likelihood estimates θ̂i,
for i ∈ {0, 1}, are defined respectively by

L(θ; y) =
∫

Z
fθ(y; z)µ(dz)

and
θ̂i = arg max

θ∈Θi

L(θ; y).

Accurately estimating LR is crucial as its value determines whether H0 is rejected or
not.
Example 2 (computation of Bayes factor for Bayesian model choice). In
Bayesian statistics, the parameter θ ∈ Θ is considered as a random variable with a
known prior distribution p(θ). The posterior distribution of θ given a dataset D is
defined as the product of the prior density and the likelihood of the model. To compare
two models M1 and M2 and choose the one that better fits the data, the Bayes factor
B12 (Gelfand and Dey, 1994) is a powerful tool. It is defined as:

B12 = p(D | M1)
p(D | M2)

where p(D | Mi) =
∫

Θ p(D | θ, M1)p(θ)dθ is the marginal likelihood of model Mi, for
i ∈ {1, 2}.
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2.2 State of the art
When the ratio (1) has no explicit expression, its computation can be performed
by evaluating separately the numerator and the denominator. This can be done, for
instance, using the harmonic mean estimator of Newton and Raftery (1994). In a
Bayesian context, this estimator uses draws from the posterior distribution to com-
pute the inverse of the marginal likelihood. However, it is known to overestimate
the marginal likelihood and can have infinite variance. Another solution is to use
importance sampling (Robert and Casella, 1999), which requires the introduction of
a proposal distribution close to the integrand. However, it may be challenging to
build such a proposal in complex settings. Furthermore, importance sampling is very
sensitive to a misspecification of the proposal with respect to the density of interest
(Gronau et al., 2017). These methods are specific cases of more general ones that aim
at estimating ratios of normalizing constants.

In this section we focus on two existing methods that will serve as comparison
for the proposed methodology: i) the Bridge sampling which is particularly popular
(Meng and Schilling, 2002; Frühwirth-Schnatter, 2004; Gronau et al., 2017, 2020), and
ii) the ratio importance sampling (Chen and Shao, 1997b) which is strongly linked
to our approach. For a more precise and exhaustive review we refer the reader to
Llorente et al. (2023, sections 4.1 and 4.2), and to Chen and Shao (1997b). In the
sequel, we denote by Z any random variable defined on a probability space (Ω, A, P )
taking values in Z, and by Ei the expectation with respect to density pi for i ∈ {0, 1}.

Bridge sampling
First introduced in Bennett (1976) and later reintroduced in Meng and Wong (1996),
the Bridge sampling is based on the following identity:

r∗ = E1 [f0(Z)α(Z)]
E0 [f1(Z)α(Z)] ,

where α is a non-negative function defined on Z verifying 0 <∫
Z α(z)p0(z)p1(z)µ(dz) < +∞. Let K be a fixed positive integer. Then the Bridge

sampling estimator of r∗ is obtained using two K-samples (Z0
k)1≤k≤K and (Z1

k)1≤k≤K

from p0 and p1 respectively as follows:

r̂BS
K =

∑K
k=1 f0(Z1

k)α(Z1
k)∑K

k=1 f1(Z0
k)α(Z0

k)
. (2)

This approach is particularly popular since in most statistical contexts it is
straightforward to apply once a first inference step has been performed. This is the
case for instance in the two examples introduced in the previous section. In the first
example dealing with hypotheses testing in latent variables models, pi is the posterior
distribution of the latent variables given the data under hypothesis Hi. In the second
example of Bayesian model choice, pi is the posterior distribution of the parameter
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given the data under model Mi. In both contexts, sampling from these distribu-
tions is part of the entire estimation process, therefore no additional work is required
regardless of the complexity of the distributions.

Meng and Wong (1996) showed that the optimal choice of α, that minimizes the
mean square error of the estimator and its asymptotic variance, is given by:

αopt
bridge(z) ∝ 1

p1(z) + p0(z) ∝ 1
r∗f1(z) + f0(z) . (3)

It reaches the following optimal normalized asymptotic variance:

V opt
bridge = 4r∗2

[(∫
Z

2p0(z)p1(z)
p0(z) + p1(z)µ(dz)

)−1
− 1
]

. (4)

As αopt
bridge depends on the unknown ratio r∗, it is not possible to use it directly

in practice. Therefore the authors propose an iterative scheme to reach the optimal
asymptotic variance. Starting from an initial guess r̂

(0)
K , and using the two K-samples

(Z0
k)1≤k≤K and (Z1

k)1≤k≤K from p0 and p1 defined above, we get:

r̂
(t+1)
K =

(
K∑

k=1

f0(Z1
k)

r̂
(t)
K f1(Z1

k) + f0(Z1
k)

)/(
K∑

k=1

f1(Z0
k)

r̂
(t)
K f1(Z0

k) + f0(Z0
k)

)
. (5)

As t grows to infinity this estimator converges towards r̃BS
K defined as:

r̃BS
K =

(
K∑

k=1

f0(Z1
k)

r̃BS
K f1(Z1

k) + f0(Z1
k)

)/(
K∑

k=1

f1(Z0
k)

r̃BS
K f1(Z0

k) + f0(Z0
k)

)

which can be rewritten as:

K∑
k=1

f0(Z1
k)

r̃BS
K f1(Z1

k) + f0(Z1
k)

−
K∑

k=1

r̃BS
K f1(Z0

k)
r̃BS

K f1(Z0
k) + f0(Z0

k)
= 0.

This last equation shows that the optimal Bridge sampling estimator can also be
defined as the root of a function. Note that the solution to this equation nullifies the
score function of Geyer’s likelihood described in Geyer (1994), leading to the reverse
logistic regression estimator.

Even if Bridge sampling is more robust than other methods as mentioned above, it
still suffers from a too small overlap between distributions p0 and p1. Indeed, when this
overlap vanishes, the optimal variance grows to infinity. In such cases, more refined
methods have been developed (see Meng and Schilling (2002); Wang et al. (2022)) that
modify the two distributions considered without changing the normalizing constant.
However, these methods are more involved since they require some additional effort
to work properly.
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Ratio importance sampling
The ratio importance sampling (RIS) estimator was first introduced in the physics
literature in Torrie and Valleau (1977) as umbrella sampling and then rediscovered in
Chen and Shao (1997b). It generalizes the importance sampling estimator to compute
a ratio of normalizing constants. Considering a positive density function π on Z,
dominated by p0 and p1, equation (1) can be written as follows:

r∗ =
∫

Z f0(z)µ(dz)∫
Z f1(z)µ(dz)

=
Eπ

[
f0(Z)
π(Z)

]
Eπ

[
f1(Z)
π(Z)

] . (6)

Equation (6) is called the ratio importance sampling identity, which will also be
the basis of the methodology proposed in this paper. The ratio importance sampling
estimator can be obtained using a 2K−sample (Zk)1≤k≤2K from π as follows:

r̂RIS
K =

∑2K
k=1 f0(Zk)/π(Zk)∑2K
k=1 f1(Zk)/π(Zk)

. (7)

Remark 1. Contrary to the Bridge sampling estimator that uses two samples, the
Ratio Importance sampling estimator only requires one. That is why it is presented
here using a sample of size 2K.

Note that identity (6) is very interesting and very general. For example, by taking
π = p1 it leads to r∗ = E1

[
f0(Z)
f1(Z)

]
which gives an unbiased estimator of r∗. However,

this estimator does not reach the optimal asymptotic variance. Indeed, Chen and
Shao (1997b) showed that the optimal proposal density that minimizes the asymptotic
variance of the estimator is given by:

πopt
ris (z) ∝ |p1(z) − p0(z)| ∝ |f1(z)r∗ − f0(z)|. (8)

It reaches the following optimal asymptotic variance:

V opt
ris = r∗2

(∫
Z

|p1(z) − p0(z)|µ(dz)
)2

. (9)

Chen and Shao (1997b, Theorem 3.3) showed that the variance of the optimal ratio
importance sampling estimator is smaller than the variance of the optimal Bridge
sampling estimator. Furthermore, when the overlap between p0 and p1 goes to 0, the
optimal variance V opt

ris converges to 4r∗ which is bounded. This is a clear advantage
compared to the previous methodology. However, contrary to the Bridge sampling
setting, there is no straightforward procedure to approximate the optimal scheme and
reach the optimal asymptotic variance. Chen and Shao (1997b) suggested a two-stage
approach consisting in building a first consistent estimator r̂ of r∗ based on a chosen
method, and then use it as a plug-in estimator in (8). Since the first step can be
difficult to achieve, the optimal scheme can be difficult to implement in practice. This
might partly explain why RIS is not as popular as Bridge sampling.

7



3 Stochastic approximation procedures to compute
ratio of normalizing constants

Given the limitations raised by the two approaches presented in the previous section,
namely the sensitivity to a small overlap of the two distributions p0 and p1 for Bridge
sampling, and the little practical applicability for RIS, there is a need for a new
method that could address these issues.

In this section we propose an approach based on stochastic approximation prin-
ciples. Our procedure convert the ratio importance sampling identity (6) into a root
finding program, which brings several advantages. First, and contrary to usual Monte
Carlo computation, there is no need to fix the sample size ahead of the procedure.
Second, the stochastic approximation framework enables the use of sampling distri-
butions that depend on the current estimate of the unknown ratio r∗, circumventing
the main obstacle of RIS, but still enjoying its good theoretical properties. Indeed, the
obtained sequence of estimates is almost surely convergent and asymptotically Gaus-
sian. It reaches the same asymptotic variance as the one of the optimal RIS estimator,
with an applicable scheme. As a consequence, it is much more robust to little overlap
between p0 and p1, avoiding the major drawback of Bridge sampling.

3.1 Description of the SARIS algorithm
Let π be a positive density function on Z. Starting from equation (1), rewritten as:∫

Z
(f0(z) − r∗f1(z))µ(dz) = 0, (10)

we can write:
Eπ

[
f0(Z) − r∗f1(Z)

π(Z)

]
= 0, (11)

where Eπ stands for the expectation with respect to the density π.
Calculating r∗ is now equivalent to finding the root of a function defined as an

expectation, and can therefore be solved using stochastic approximation algorithms.
Assuming that r0 is given in R and that one can sample independent draws from π,
we thus consider the sequence (rk)k≥0 of estimators of r∗, defined by the following
recursion for every positive integer k:

rk+1 = rk + γk+1
f0(Zk+1) − rkf1(Zk+1)

π(Zk+1) , with Zk+1 ∼ π, (12)

and where (γk)k≥0 is a sequence of positive decreasing step sizes.
The main task in the construction of the sequence is the choice of the proposal

distribution π. Most of the relevant choices for π might depend on the true ratio r∗.
For example the optimal choice for the Bridge sampling involves the quantity p0 + p1,
depending on r∗ which can not be evaluated. This is also the main drawback to the use
of optimal ratio importance sampling. Thanks to its iterative nature, our methodology
allows to consider proposal distributions which might depend on r∗. More precisely,
let us consider a positive density function πr on Z which depends on r. Equation (11)
can be written as:
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Eπr∗

[
f0(Z) − r∗f1(Z)

πr∗(Z)

]
= 0. (13)

Such equations can be solved using the Robbins-Monro algorithm (Robbins and
Monro, 1951) that is based on the following stochastic recursion defined for every
positive integer k:

rk+1 = rk + γk+1
f0(Zk+1) − rkf1(Zk+1)

πrk
(Zk+1) , with Zk+1 ∼ πrk

(14)

The general algorithm is called SARIS (Stochastic Approximation Ratio Impor-
tance Sampling) and is summarized in Algorithm 1.

Algorithm 1 SARIS algorithm
Input: (γk)k≥0, r0, stopping criterion
Until stopping criterion:

Draw Zk+1 from πrk

Update rk+1 = rk + γk
f0(Zk+1)−rkf1(Zk+1)

πrk
(Zk+1)

k = k + 1
Return rk

Remark 2. The iterative structure of our procedure enables to introduce a stopping
criterion. This is not the case in many other methods, in particular for ratio impor-
tance sampling and Bridge sampling. Indeed in those two cases it is not possible to
compute rk+1 given rk, therefore one should fix the sampling size at the beginning of
the procedure.
Remark 3. In most real-life applications, it is difficult to independently and exactly
simulate from complex distributions. Therefore, the simulation step in (14) might be
intractable. It is however possible to use the transition kernel of an ergodic Markov
Chain having πr as invariant distribution. One common practical choice for such
Markov Chain Monte Carlo (MCMC) sampling scheme is the Metropolis-Hastings
or the Metropolis-within-Gibbs algorithm (Robert and Casella, 1999). The recursive
scheme (14) can therefore be generalized as follows for every positive integer k:

rk+1 = rk + γk+1
f0(Zk+1) − rkf1(Zk+1)

πrk
(Zk+1) Zk+1 ∼ Πrk

(.; Zk) (15)

where Πr(., .) is a transition kernel of an ergodic Markov chain with invariant
distribution πr.
Remark 4. We emphasize that the SARIS algorithm can also be used to compute a
single marginal likelihood. If we know a density p only up to a normalizing constant
c, p = f/c, then by introducing a known normalized density g, the SARIS algorithm
can be used to compute the ratio r∗ = c.
Remark 5. Finally, the proposed procedure enables to directly estimate any strictly
monotonous and invertible transformation g of the ratio. Suppose that the objective
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is to compute g(r∗) (for example g = −2 log to obtain a likelihood ratio statistic).
The recursive scheme (14) can be easily modified to estimate g(r∗) with the sequence
(gk)k≥0 defined as follows:

gk+1 = gk + γk+1
f0(Zk+1) − g−1(gk)f1(Zk+1)

πg−1(gk)(Zk+1) Zk+1 ∼ πg−1(gk) (16)

Algorithm 1 can be easily adapted using this recursion, only changing the updating
rule.

3.2 Theoretical property of the SARIS algorithm
In this section we study the theoretical convergence property of the sequence (rk)k≥0
generated by the SARIS procedure described in Algorithm 1. We emphasize that such
a setting is less general than the recursion defined in (15), however its theoretical
study corresponds to the one of Robbins and Monro (1951). Moreover it allows a more
fair comparison with the Monte Carlo methods presented in section 2.2, for which the
theory was established for independent and identically distributed sampling.

We first state some regularity assumptions on the functions f0, f1 and on the
densities {πr, r ∈ R}:
Assumption 1. The functions f0 and f1 are positive integrable and for every z ∈ Z,
r 7→ πr(z) is continuous.
Assumption 2.

E0

(
sup
r∈R

∣∣∣∣f0(Z) − rf1(Z)
πr(Z)

∣∣∣∣)+ E1

(
sup
r∈R

∣∣∣∣f0(Z) − rf1(Z)
πr(Z)

∣∣∣∣) < +∞.

This assumption ensures the integrability of the main quantities involved in the
algorithm. We also state a common assumption on the sequence of step sizes (γk)k≥0.
Assumption 3. The sequence (γk)k≥0 is positive, decreasing and verifies

∑+∞
k=0 γk =

+∞ and
∑+∞

k=0 γ2
k < +∞.

We can now state the almost sure (a.s.) convergence of the sequence (rk).
Proposition 1. Considering the sequence (rk)k≥0 generated by Algorithm 1, under
Assumptions 1, 2 and 3, we get:

lim
k→+∞

rk = r∗ a.s.

The proof is postponed to the appendix. We now require a stronger regularity
assumption on the functions f0, f1, πr to derive the asymptotic distribution of the
sequence (rk)k≥0.
Assumption 4. The functions f0 and f1 are not proportional to each other.
Assumption 5. There exists δ > 0 such that

sup
k≥0

E0

(∣∣∣∣f0(Z) − rkf1(Z)
πrk

(Z)

∣∣∣∣1+δ
)

+ sup
k≥0

E1

(∣∣∣∣f0(Z) − rkf1(Z)
πrk

(Z)

∣∣∣∣1+δ
)

< +∞.
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Assumption 6. There exists 1
2 < ϵ < 1, a > 0, b > 0 such that the sequence of step

sizes (γk) is of the form γk = a
b+kϵ .

These integrability and step sizes assumptions are classical ones to obtain
asymptotic normality results for martingales. The next result states the asymptotic
normality of the averaged sequence defined as (rAV

k )k≥0 =
(

1
k

∑k
j=0 rj

)
k≥0

.

Proposition 2. Considering the sequence (rk)k≥0 generated by Algorithm 1 and its
averaged version (rAV

k )k≥0, under Assumptions 1, 4, 5 and 6, we get:

√
k
(
rAV

k − r∗) d−→
k→+∞

N (0, Vsaris(πr∗))

with

Vsaris(πr∗) = 1
c12 Er∗

[(
f0(Z) − r∗f1(Z)

πr∗(Z)

)2
]

where the expectation Er∗ is taken with respect to the density πr∗ . Furthermore, the
optimal proposal πopt

saris defined as the one which minimizes the asymptotic variance is
given as

πopt
r∗ (z) ∝ |p1(z) − p0(z)|,

corresponding to the optimal variance:

V opt
saris = r∗2

(∫
Z

|p1(z) − p0(z)|µ(dz)
)2

.

The proof is postponed to the appendix and relies on similar arguments as the
derivation of optimal importance function in importance sampling (see Robert and
Casella (1999) for more details). We achieve the same optimal variance and retrieve
the optimal proposition density of ratio importance sampling. Moreover in Chen and
Shao (1997b) the authors show that this variance is smaller than the variance of the
optimal Bridge sampling estimator.
Remark 6. If sampling is done through the use of a Markov transition kernel, similar
theoretical results can be obtained assuming additional regularity conditions on the
Markov kernel. For further details we refer to Allassonniere and Kuhn (2015) and
Fort (2015).

It is important to notice that the algorithm presented in this section is not always
applicable. In particular, the analytical expression of the optimal proposal density πopt

r∗

is unknown, and therefore the update rule of the sequence rk defined in Algorithm 1
is not computable. The next section solves this issue.

3.3 A practical extension of the SARIS algorithm
Suppose that for all z, πr(z) = π̃r(z)/c(r) where the analytical expression of π̃r(z) is
known, then equation (11) is equivalent to:

Eπr∗

[
f0(Z) − r∗f1(Z)

π̃r∗(Z)

]
= 0. (17)
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Based on this identity, one can consider the following extension of Algorithm 1
called SARIS-EXT, that uses the known unnormalised density π̃r :

Algorithm 2 SARIS-EXT algorithm
Input: (γk)k≥0, r0, stopping criterion
Until stopping criterion:

Draw Zk+1 from πrk
∝ π̃rk

Update rk+1 = rk + γk
f0(Zk+1)−rkf1(Zk+1)

π̃rk
(Zk+1)

k = k + 1
Return rk

We state mild additional conditions on π̃r similar to Assumptions 2 and 5, to prove
that the sequence (rk)k≥0 generated by Algorithm 2 verifies the same properties as
the one generated by Algorithm 1.
Assumption 7.

E0

(
sup
r∈R

∣∣∣∣f0(Z) − rf1(Z)
π̃r(Z)

∣∣∣∣)+ E1

(
sup
r∈R

∣∣∣∣f0(Z) − rf1(Z)
π̃r(Z)

∣∣∣∣) < +∞.

Proposition 3. Considering the sequence (rk)k≥0 generated by Algorithm 2, under
Assumptions 1, 3 and 7, we get:

lim
k→+∞

rk = r∗ a.s.

Assumption 8. There exists δ > 0 such that

sup
k≥0

E0

(∣∣∣∣f0(Z) − rkf1(Z)
π̃rk

(Z)

∣∣∣∣1+δ
)

+ sup
k≥0

E1

(∣∣∣∣f0(Z) − rkf1(Z)
π̃rk

(Z)

∣∣∣∣1+δ
)

< +∞.

Assumption 9. There exists a neighborhood U of r∗ such that r 7→ h(r) = c0−rc1
c(r) is

continuously differentiable and h′(r∗) < 0.
Assumption 10. For all r ∈ R the set Ar = {z ∈ Z, f0(z) = rf1(z)} satisfies
µ(Ar) = 0.
Remark 7. i) Assumption 9 is required to apply a central limit theorem on the
sequence (rk)k≥0. For the SARIS algorithm, h(r) = c0−rc1 which does not require reg-
ularity conditions, as it is affine. ii) Assumption 10 is required to ensure that copt(r)
defined as the normalizing constant of z 7→ π̃opt

r (z) = |f0(z)−rf1(z)| ∝ πopt
r (z) verifies

Assumption 9. The following proposition extends the theoretical results of the SARIS
algorithm to the SARIS-EXT algorithm.
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Proposition 4. Considering the sequence (rk)k≥0 generated by Algorithm 2 and its
averaged version (rAV

k )k≥0, under Assumptions 1, 4, 6, 8 and 9, we get:

√
k
(
rAV

k − r∗) d−→
k→+∞

N (0, Vext(π̃r∗))

Moreover we have :
Vext(π̃r∗) = Vsaris(πr∗).

Furthermore, under Assumption 10, an optimal unnormalised proposal π̃opt
r defined as

one of which minimizes the asymptotic variance is given as

π̃opt
r∗ (z) = |f0(z) − r∗f1(z)| ∝ πopt

r∗ (z)

corresponding to the optimal variance:

V opt
saris = r∗2

(∫
Z

|p1(z) − p0(z)|µ(dz)
)2

.

This proposition shows that theoretically, the extended algorithm has the same
asymptotic performances as the initial SARIS algorithm.

4 Non optimal methods using draws from p0 and p1

4.1 Estimating ratios of normalizing constants using only
distributions p0 and p1

It is interesting to compare methods that use draws solely from p0 and p1. As explained
in Section 2.1 with the two examples, in latent variable models, these represent the
posterior distributions of latent variables given data under two different hypotheses.
In Bayesian inference, they denote the posterior distributions of parameters under
two distinct models. In both contexts, draws from these distributions are essential
for inference, making it convenient to consider proposal distributions based on them.
Numerically, this allows for the reuse of already simulated samples. Practically, it
simplifies the method by eliminating the need to build new samplers.

A natural choice is a mixture of p0 and p1, similar to the approach proposed by
Chen and Shao (1997b) in Section 5, and closely related to bridge sampling. We define
the proposal density based on this mixture as follows:

z 7→ πmixt
r∗ (z) = 1

2 {p0(z) + p1(z)} ∝ f0(z) + r∗f1(z) (18)

As long as we know how to draw samples from p1 and p0, it is easy to sample from
this mixture, by sampling uniformly randomly from one or the other distribution.
Of course the analytical expression of πmixt

r is unknown, but the extended algorithm
is applicable considering the unnormalised density π̃mixt

r (z) = f0(z) + rf1(z). The
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simulating step in Algorithm 2 requires to sample from πmixt
rk

, which verifies for every
z ∈ Z :

πmixt
rk

(z) ∝ f0(z) + rkf1(z)
∝ c0p0(z) + rkc1p1(z)
∝ r∗p0(z) + rkp1(z)

⇐⇒ πmixt
rk

=
(

1 − rk

rk + r∗

)
p0(z) + rk

rk + r∗ p1(z) (19)

where the weights of the mixture depend on r∗. Therefore it is not possible to sample
from πmixt

rk
using simply draws from p0 and p1.

Remark 8. We emphasize that even if it is not possible to sample from πmixt
rk

using
draws from p0 and p1, it is still possible to use a MCMC procedure to sample from
πmixt

rk
∝ f0 + rkf1, but this loses the practical benefits of using separately the two

distributions. This scheme is still illustrated in the simulation study.
However, as simulating from the mixture πmixt

r∗ is possible, one can consider the
following alternative recursive scheme :

rk+1 = rk + γk+1
f0(Zk+1) − rkf1(Zk+1)

π̃mixt
rk

(Zk+1) , Zk+1 ∼ πmixt
r∗ (20)

which defines a new estimation procedure that is summarized in Algorithm 3, and
called SARIS-MIXT.

Algorithm 3 SARIS-MIXT algorithm
Input: (γk)k≥0, r0, stopping criterion
Until stopping criterion:

Draw Zk+1 from πmixt
r∗ = 1

2 (p0 + p1)
Update rk+1 = rk + γk

f0(Zk+1)−rkf1(Zk+1)
f0(Zk+1)+rkf1(Zk+1)

k = k + 1
Return rk

Remark 9. Contrary to the SARIS-EXT algorithm, in this procedure the distribution
used for the sampling step does not depend on the current ratio rk.

It can be shown that under mild conditions, the sequence generated by Algorithm 3
converges almost surely towards r∗ and is asymptotically Gaussian. The proof follows
the same lines as for the two other SARIS algorithms, the main steps are given in the
proof of the next result.

Unfortunately, the estimator obtained from the algorithm SARIS-MIXT presents
a higher asymptotic variance than the one obtained using SARIS-EXT with π̃mixt

r as
proposal, Vext(π̃mixt

r∗ ). The following proposition formalizes this statement.
Proposition 5. Let V mixt

saris be the asymptotic variance of the averaged sequence
generated by the SARIS-MIXT Algorithm 3. Let π̃mixt

r (z) = f0(z) + rf1(z) be the
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unnormalised mixture between p0 and p1. Let Ψ be the quantity defined as:

Ψ =
∫

Z

p1(z)p0(z)
1
2 {p1(z) + p0(z)}

dz

Under Assumptions 1, 4, 6, we get :

Vext(π̃mixt
r∗ ) = 4r∗2 (1 − Ψ) = Ψ2V mixt

saris .

The quantity Ψ can be seen as an overlap index between p0 and p1. It is easy to
show that 0 ≤ Ψ ≤ 1. If the two distributions have disjoint supports, then Ψ = 0. If
p0 = p1 then Ψ = 1.

This index Ψ is very convenient to compare the asymptotic variances derived in
Proposition 5 with those of the optimal Bridge sampling estimator and ratio impor-
tance sampling estimator using πmixt

r∗ as proposal. For a detailed description of the
later called Bridge-like ratio importance sampling method (RIS-MIXT), we refer to
Chen and Shao (1997b), section 5. Let V mixt

ris denote the asymptotic variance of the
Bridge-like ratio importance sampling estimator. The following relationship exists
between the various variances discussed in this paragraph:

Vext(π̃mixt
r∗ ) = Ψ × V opt

bridge = Ψ2 × V mixt
ris = Ψ2 × V mixt

saris (21)

Note that the SARIS-MIXT estimator reaches the same asymptotic variance as the
Bridge-like ratio importance sampling estimator, which is not surprising as they are
both based on the same identity (6).

It is noticable that Vext(π̃mixt
r∗ ) is bounded, unlike the other variances that diverge

as Ψ approaches 0. In fact, when Ψ = 0, πmixt
r aligns with πopt

r . Therefore, finding
a way to sample from the distribution defined by (19) using only draws from p0 and
p1 would be very beneficial. This would allow for variance reduction, as described in
equation (21), while still maintaining the simplicity of simulating only from p0 and p1.
This result indicates that Bridge sampling is still the best method when using only
draws from p0 and p1. However, when Ψ is closed to one (which is the case with a lot
of overlap between p0 and p1), these methods remain comparable.

The next section explores the extension of the SARIS-MIXT algorithm to a joint
procedure with parameter inference in latent variables models.

4.2 A joint procedure for model parameter estimation and
LRT statistic computation in latent variables models

In this section, we extend the use of the SARIS estimator based on mixtures between
p0 and p1 to the context of likelihood ratio test (LRT) in latent variables model
and introduce a joint procedure for model parameter inference and LRT statistic
computation.

Consider two random variables Y on Y and Z on Z. Assume that the joint density
of (Y, Z) belongs to a parametric family {fθ, θ ∈ Θ}, with Θ ⊂ Rp with p a positive
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integer. We only observe a realization y of Y , the random variable Z being unobserved.
The maximum likelihood estimator θ̂ is defined as:

θ̂ = arg max
θ∈Θ

L(θ; y)

where the marginal likelihood L(θ; y) is equal to the complete likelihood integrated
over the latent variable:

L(θ; y) =
∫

Z
fθ(y, z)µ(dz)

The above integral is often untractable, which makes the optimization process
difficult. To solve this issue, stochastic methods can be used. Two popular ones are the
stochastic approximation expectation maximization (SAEM) algorithm (Delyon et al.,
1999; Kuhn and Lavielle, 2004) and the stochastic gradient descent (SGD) algorithm
(Baey et al., 2023). Both methods require draws from the posterior distribution of the
latent variables given the data whose density is denoted by pθ in the sequel.

Both SAEM and SGD are iterative algorithms that can be summarized as follows,
at each step k > 0:

1. Draw Zk from pθk
.

2. Update θk with a gradient step when using SGD or a maximization step when
using SAEM.

Consider now the context of Example 1 where the objective is to test the
hypotheses:

H0 : θ ∈ Θ0 against H1 : θ ∈ Θ1

where Θ0 ⊂ Θ1 ⊂ Θ. The LRT statistic equals:

LR = −2 log
(

L(θ̂0; y)
L(θ̂1; y)

)
.

We propose to combine the estimation procedures for θ̂0 and θ̂1 with the com-
putation of the marginal likelihood ratio r∗ = exp(−LR/2), taking advantage of the
computational effort of the inference task. The procedure is detailed in Algorithm 4.
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Algorithm 4 Joint parameter and LRT statistic estimation in latent variables models
Input: z0,0, z1,0, θ0,0, θ1,0, r0, (γk)k≥0
k = 0
Until convergence criterion:

Draw z0,k+1 from pθ0,k
and z1,k+1 from pθ1,k

Update θ0,k+1 and θ1,k+1 using a SGD or SAEM step
Draw z̃k+1 from a uniform distribution on {z0,k+1, z1,k+1}
Update rk+1 as:

rk+1 = rk + γk

fθ0,k+1(y, z̃k+1) − rkfθ1,k+1(y, z̃k+1)
fθ0,k+1(y, z̃k+1) + rkfθ1,k+1(y, z̃k+1)

k = k + 1
Return rk, θ0,k, θ1,k

Remark 10. When the two estimation processes can not be applied jointly, this pro-
cedure can be carried out post-estimation, provided the sequences (θi,k, zi,k)i=0,1,k≥0
are kept in memory.
Remark 11. If only one marginal likelihood is to be estimated, the procedure applies
by introducing a proposal density q (or a sequence of proposal densities (qk)k≥0) from
which it is possible to sample from and to proceed as follows:

1. Draw zk+1 from pθk

2. Update θk+1 with SGD or SAEM step
3. With probability 0.5 define z̃k+1 = zk+1, otherwise draw z̃k+1 from qk+1(.)
4. Update rk+1 as:

rk+1 = rk + γk

fθk+1(y, z̃k+1) − rkqk+1(z̃k+1)
fθk+1(y, z̃k+1) + rkqk+1(z̃k+1)

The R package bridgesampling (Gronau et al., 2020) proposes to use a Gaussian
approximation as a second distribution when considering the computation of a single
marginal likelihood. However, in our procedure prior knowledge on the distribution of
interest (mean and variance for example) is not available as inference has not been
performed yet. A possible approach to overcome this issue could be to use a Gaussian
proposal with adaptive mean mk and variance σ2

k, where mk and σ2
k are defined at

each step k as follows:

mk+1 = mk + γk(zk+1 − mk)
vk+1 = vk + γk(z2

k+1 − vk)
σ2

k+1 = vk+1 − m2
k+1

5 Numerical experiments and practical considerations
This section is devoted to numerical experiments. We first illustrate the performances
of the three SARIS estimators compared to the RIS estimator of Chen and Shao
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(1997a) and the optimal Bridge sampling estimator of Meng and Wong (1996). We
then provide an example of the joint procedure introduced in Section 4.2.

5.1 Simulation study in a one dimensional Gaussian setting
We first illustrate our method with a one dimensional Gaussian setting. We consider
two Gaussian distributions, f0 = ϕ and f1 = ϕ(· − µ) where ϕ is the standardized
Gaussian density and µ ∈ R. Since these densities are already normalized, we have
c0 = c1 = 1 and therefore r∗ = 1.

In the simulation study, we compare the performances of three SARIS estimators
presented in this paper. These methods are compared with the optimal bridge sam-
pling estimator (BRIDGE OPT) and the RIS estimator based on πmixt

r∗ (RIS-MIXT).
For the entire simulation study, the sampling steps are performed using one step of an
adaptive Metropolis Hastings (MH) algorithm (see for example Roberts and Rosen-
thal (2009, section 3)) in order to stick to most real life applications, implemented
manually.

The three SARIS estimators presented in Figure 1 are the following:

1) Optimal SARIS extended using π̃opt
r (SARIS-EXT opt)

This is the estimator generated by Algorithm 2 using π̃opt
r (z) = |f0(z) − rf1(z)|. In

this procedure, the increment f0(Zk+1)−rkf1(Zk+1)
|f0(Zk+1)−rkf1(Zk+1)| ∈ {0; 1} only takes two values. The

drawback is that the increment has no intensity, i.e. it gives no indication on the order
of magnitude of the descent step. However, it can still solve computational issues, in
particular when the evaluation of the likelihood can be complicated. In order to use
this method, one only need to know how to evaluate the unnormalised densities up
to a non decreasing transformation, as only comparison of them is required, and not
their evaluation.

2) SARIS using mixture between p0 and p1 (SARIS-MIXT)
This distribution has already been discussed in Section 4. As long as we know how
to draw samples from p1 and p0, it is easy to sample from the mixture by randomly
sampling from one or the other distribution with probability 1/2:1/2. This estimator
corresponds to the one generated by Algorithm 3.

3) SARIS extended using π̃mixt
r = f0(z) + rf1(z) (SARIS-EXT-mixt)

This proposal is not of practical use, as it neither uses draws from p0 and p1 nor is
an approximation of the optimal scheme. However, it is interesting to distinguish it
from the previous one, as they are very similar. This distribution is also a mixture
between p0 and p1 as explained in Section 4. Even if it is supposed to approximate
πmixt

r∗ , it benefits from a significant gain in performance, as Proposition 5 theoreti-
cally justifies it, and Figure 1 illustrates it.

Note that the three different proposal considered above lead to a bounded incre-
ment. This property is crucial both from a practical point of view, as it enhances
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the numerical stability of the procedure, and a theoretical one, as it guarantees
Assumptions 2 and 5 to be verified.
Remark 12. The optimality criterion considered in this article is given by the asymp-
totic variance of the exact sampling scheme, which is most of the time intractable in
practice. Indeed, in most real life applications sampling is performed through the use
of transition kernels in MCMC algorithms. In this setting, even if central limit theo-
rems may apply under regularity conditions, the asymptotic variance is in general not
explicit and there is no guarantee that the proposal which minimizes this variance is
the same as in the exact sampling case. Therefore it might still be of practical interest
to consider other proposals. Some proposal distributions are worth mentioning, e.g.
the geometric mean between p0 and p1 discussed in Meng and Wong (1996) and Chen
and Shao (1997a) for example, or an element of the q-path between p0 and p1 that
generalizes the harmonic mean and geometric mean between the two distributions (see
Brekelmans et al. (2020) for details).

For each of the SARIS procedure the following step size is considered:{
γk = 0.1 for k < Kheat

γk = 0.1
1+k2/3 otherwise,

(22)

which is standard in the stochastic gradient descent literature. It verifies Assumption
3 and 6 while presenting a heating phase that enables a wider exploration of the
parameter space at the beginning of the algorithm.

As discussed in Section 2.2, the optimal Bridge sampling estimator is not available
in a closed form, so we relied on the recursive algorithm described in equation (5),
which was run until convergence. For the RIS estimator, we used equation (7) using
πmixt

r∗ as proposal distribution.
We adjusted the sample sizes of each method to make sure that they are all

comparable in terms of number of calls to functions f0 and f1. Four MH samplers
were implemented. The first two are MH samplers whose invariant distributions are
p0 and p1. These are used for BRIDGE-OPT, RIS-MIXT and SARIS-MIXT. Then
two samplers generating non homogenous Markov chains with, at each step, invariant
distributions being πopt

rk
and πmixt

rk
, were built to compute respectively the SARIS-

EXT-opt and the SARIS-EXT-mixt estimators.
For each of the estimators, a budget of 2K+2Kheat draws were allocated, with 2K

samples used to compute the estimators and 2Kheat for heating the MH samplers. For
the experiments, we used K = 5000 and Kheat = 300.

We also considered the estimation of log(r∗) using recursion (16). From a theoreti-
cal point of view, the use of this transformation is equivalent to using a delta method.
Therefore, results obtained for the estimation of log r∗ or r∗ are comparable in terms
of performances. However, since the numerical stability of the procedure is greater in
the former case, in the sequel we only present results associated with the estimation
of log r∗.

We first consider two cases: 1) a strong overlap between p0 and p1 with µ = 1 and
2) a small overlap between p0 and p1 with µ = 5. Results are presented in Figure 1.
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Fig. 1 Estimation of log r∗ using the optimal bridge sampling estimator (BRIDGE-OPT), the bridge
like ratio importance sampling (RIS-MIXT), SARIS-EXT-mixt, SARIS-EXT-opt and SARIS-MIXT.
The black line represents the true value log(r∗) = 0. The boxplots were computed on 50 repetitions
of the experiments. The two graphs illustrate strong overlap between p0 and p1 (on the left, in the
case µ = 1) and little overlap (on the right, in the case µ = 5)

As the theory suggests, the optimal bridge sampling estimator outperforms the
two other methods based on samples from p0 and p1. However, when considering the
case µ = 1, the five methods present performances of the same order. The fact that
the bridge like ratio importance sampling performs better than the SARIS-MIXT
estimator can be interpreted by the fact that the ratio importance sampling estima-
tor imposes at each step the estimator to solve the empirical version of the SARIS
identity (11), which might enhance the stability of the procedure. This difference
should be diminished by considering adaptive step sizes, to mimic the differences
between r̂ris

K and r̂ris
K+1.

Figure 1 illustrates the fact that the SARIS-EXT estimators presented are much
more robust to little overlap than ratio importance sampling and Bridge sampling.
However, it also illustrates the fact that in more simple cases such as the one illustrated
in Figure 1, methods that only use draws from p0 and p1, which are easier to apply
might be sufficient.

To show intermediate results between the cases µ = 1 and µ = 5, and worse ones,
we compare the optimal Bridge sampling estimator with the SARIS-EXT-opt estima-
tor for varying values of µ between 1 and 10. For the simulations we use K = 5000
samples for each expectation in the bridge sampling estimation procedure, and there-
fore use 2K samples for the SARIS procedure. Results are displayed in Figure 2.
For each value of µ, 50 repetitions were computed. The dots represent the empirical
means and the errorbars the empirical standard deviations computed over the 50 rep-
etitions. Figure 2 illustrates the robustness of the proposed procedure in comparison
to the bridge sampling estimator that highly deteriorates when the overlap reduces.
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Fig. 2 Estimation of the log ratio of normalizing constants of the densities of a N (0, 1) and the
one of a N (µ, 1) for varying values of µ, using the optimal Bridge sampling estimator BRIDGE-OPT
(red) and SARIS-EXT-opt to compute the ratio The dots represent the empirical means and the
error bars the empirical standard deviations computed over 50 repetitions.

This makes the proposed procedure appealing when little information is available on
the distributions.

5.2 Joint estimation in latent variables models
To illustrate the joint procedure presented above, we consider the following model of
linear regression with missing values. Let i = 1, ..., n, we observe the response yi ∈ R
modeled as :

yi = β0 + β1xi1 + β2xi2 + εi (23)
where (εi)i=1,...,n is a sequence of independent and identically distributed Gaussian

noise with known variance σ2, β = (β0, β1, β2)T is an unknown vector of regression
coefficients, and (xi)i=1,...,n = (xi1, xi2)T

i=1,...,n is an independent and identically dis-

tributed sample of covariates from a N
(

(µ1, µ2)T ,

(
γ2

1 0
0 γ2

2

))
. We suppose that for

i = 1, ..., r we only observe (yi, xi1) and for i = r+1, ..., n we observe (yi, xi1, xi2). This
example is borrowed from the lecture notes of Julie Josse ”Handling Missing values”
available on this website1. Here the parameter to estimate is θ = (β, γ2

1 , γ2
2 , µ1, µ2).

In order to make the notations as simple as possible, we will confound the notations
of the random variables and their observed realizations. Furthermore, we are going to
write fθ(z) the density of the random variable Z evaluated at z. For example fθ(yi|xi1)
is the conditional density of yi given xi1.

With these notations, the complete likelihood Ln(θ) is given by :

1https://juliejosse.com/wp-content/uploads/2018/07/LectureMissing Weij modifAude.html
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Ln(θ) =
n∏

i=1
fθ(yi, xi)

=
n∏

i=1
fθ(yi|xi)fθ(xi)

However we do not observe the first r (xi2)i that are handled as latent variables,
therefore the observed likelihood is marginalized over their distribution :

Ln(θ) =
[

r∏
i=1

fθ(yi, xi1)
]

×
n∏

i=r+1
fθ(yi, xi)

=
[

r∏
i=1

fθ(yi|xi1)fθ(xi1)
]

×
n∏

i=r+1
fθ(yi|xi)fθ(xi)

=
[

r∏
i=1

∫
xi2

fθ(yi|xi1, xi2)fθ(xi1)fθ(xi2)dxi2

]
×

n∏
i=r+1

fθ(yi|xi)fθ(xi)

In fact we can compute exactly the marginal likelihood as the conditional distri-
bution of yi given x1i is a N

(
β1xi1, β2

2γ2
2 + σ2).

Given a realization x2 = (xi2)i=1,..,r of the unobserved variables, we introduce the
complete log likelihood defined as :

ln(x12, ..., xr2; θ) =
n∑

i=1
log (fθ(yi, xi))

We consider here the following test :

H0 : β0 = 0 against H1 : β0 ̸= 0
To apply the joint procedure described in Section 4.2 we consider the unconstrained

parameter space Θ1 corresponding to the alternative hypothesis, and the constrained
parameter Θ0 that corresponds to the case β0 = 0. For the two estimation procedures,
we used stochastic gradient descent. At each step k the procedure computes an estima-
tor gk of the log likelihood ratio, jointly to the estimators θ̂0,k and θ̂1,k of respectively
the restricted and unrestricted maximum likelihood estimators as follows :

1. Draw x(k+1)
02 from the posterior distribution of (xi2)i=1,...,r given

((yi, xi)i=1,...,r, θ̂0k) and x(k+1)
12 from the posterior distribution of (xi2)i=1,...,r

given ((yi, xi)i=1,...,r, θ̂1k)
2. Update θ̂0,k+1 and θ̂1,k+1 each with a gradient step :

θ̂0,k+1 = θ̂0,k − γk∇θln(x(k+1)
02 ; θ̂0,k)

θ̂1,k+1 = θ̂1,k − γk∇θln(x(k+1)
12 ; θ̂1,k)
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3. Draw x̃(k+1)
2 from a uniform distribution on {x(k+1)

02 , x(k+1)
12 }

4. Update gk+1 as :

gk+1 = gk + γk

exp
{

ln(x̃(k+1)
2 ; θ̂0,k)

}
− exp

{
ln(x̃(k+1)

2 ; θ̂1,k) + gk

}
exp

{
ln(x̃(k+1)

2 ; θ̂0,k)
}

+ exp
{

ln(x̃(k+1)
2 ; θ̂1,k) + gk

}
For the following experiments, we used a constant step size of γk = 0.1 for the

SARIS procedure and the estimation processes to keep the speed of convergence of the
different iterations as similar as possible. The parameters used to generate the data
are µ = (1, 1)T , (γ1, γ2) = (1, 1), σ2 = 2 and β = (0.1, 1, 1). Finally, we considered
n = 200 individuals and two different numbers of missing values. We considered r = 20
which corresponds to 10% of missing values for the second covariate, and then r = 50
which corresponds to 25%. We used K = 250 iterations for the estimation process.
We reproduced the experiment 20.

Fig. 3 Estimation of the log likelihood in the latent variable model of Section 5.2 in the case r = 10%n

(on the left) and r = 25%n (on the right). Comparison over the iterations of the exact likelihood ratio(
−2 log

Ln(θ̂0,k)

Ln(θ̂1,k)

)
k≥0

(exact in red) and its approximation (−2gk)k≥0 (approx in blue) using the joint

procedure described in Section 4.2. The dots represents the means taken over 20 repetitions, the errorbars
correspond to the empirical standard deviation.

Fig. 4 Evolution of the empirical mean square error between the exact log likelihood ratio and its approx-
imation using the joint procedure described in Section 4.2 in latent variable model of Section 5.2 in the
case r = 10%n (on the left) and r = 25%n (on the right). The dots represents the means taken over 20
repetitions, the errorbars reach the 5% and 95% empirical quantiles.

Figure 3 displays the evolution of the exact likelihood ratio −2 log Ln(θ̂0,k)
Ln(θ̂1,k) over

the iterations, compared to the one of the SARIS estimator obtained using the joint
procedure described in Section 4.2. The dots represent the mean, and the errorbars
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the standard deviations computed over the 20 repetitions of the experiment. Figure
4 plots the mean squared error between the exact log likelihood ratio along the
iteration process and its approximation using the SARIS joint procedure. The dots
are the mean over the 20 repetitions, and the errorbars reach the 5% and 95% corre-
sponding empirical quantiles.

In the case where r = 10%n we observe that the joint procedure accurately tracks
the exact value of the likelihood ratio along the estimation process which is very
encouraging. We observe that in the more complex case where r = 25%n the joint
procedure correctly tracks the exact likelihood ratio statistic but with a small bias.
There might be several sources for this bias such as the difference in convergence
speed of both estimation processes or the higher variance due to the higher num-
ber of missing data. However, the approximation still tracks the exact value along
iterations, which makes the proposed joined procedure appealing as a first step of a
marginal likelihood computation. Indeed it gives a first estimator at the end of the
estimation process that might be used as a starting point for a SARIS procedure, or
an estimator r̂ to use the approximated optimal scheme of Chen and Shao (1997b) to
use as proposal distribution π ∝ |f0 − r̂f1| in a ratio importance sampling procedure.

All the experiments were computed on R version 4.3.3 (2024-02-29 ucrt). For
reproducibility the scripts are available at this link2.

6 Conclusion
We proposed a new methodology to compute ratios of normalizing constants that relies
on the principle of stochastic approximation. Our procedure presents good theoretical
properties which makes it competitive with the best methods from the literature. More
precisely, our estimator is consistent and asymptotically Gaussian as the number of
iterations goes to infinity. Moreover, the practical implementation of the algorithm
reaches an asymptotic variance which is smaller than the optimal variance of the
Bridge sampling estimator. Another important advantage is that our estimator does
not require to fix in advance the computational effort thanks to its iterative nature.
Indeed our procedure can be stopped in practice once a given convergence criterion
is reached. Furthermore, our estimator seems more robust to little overlap between
the two unnormalised distributions considered and outperforms the Bridge sampling
estimator in some of the numerical examples considered. The proposed methodology
also allows for the computation of single marginal likelihoods. Moreover, in the context
of likelihood ratio test statistics in latent variables models, our procedure can be
integrated in the parameter estimation process to reduce the computational effort.

Besides these positive points, there are several interesting perspectives to investi-
gate. Thanks to the rich literature on stochastic approximation and more specifically
on stochastic gradient descent, many refinements can be explored, such as accelera-
tion, variance reduction or adaptive step sizes. Similarly, refinements used in classical
Monte Carlo such as the Warp Bridge sampling (Meng and Schilling, 2002; Wang et al.,

2https://github.com/tguedon/saris
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2022) could be applied to reduce the asymptotic variance of the estimator. Further-
more, as a method to compute ratios of normalizing constants, the SARIS procedure
can benefit from the use of intermediate distributions that enable to decompose the
problem into several simpler sub-problems, in the principle of stepping stone sampling.
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Appendix A Proofs
A.1 Proof of Proposition 1
We first rewrite the iterative scheme (14) for every positive integer k:

rk+1 = rk + γk+1Hπrk
(Zk+1), Zk+1 ∼ πrk

27



introducing the notation Hπr (z, r) = f0(z)−rf1(z)
πr(z) .

We apply the almost sure convergence theorem of Robbins-Monro algorithms
(Robbins and Monro, 1951) stated in section 5.1 of Benveniste et al. (2012) to prove
Proposition 1.

Under Assumption 1 we can define the function h for every r ∈ R by h(r) =
Er [Hπr (Z, r)] where Er stands for Eπr for sake of simplicity. It follows directly that
h(r) = c0 − rc1 for every r ∈ R and h(r∗) = 0. We define the filtration (Fk)≥0
corresponding to the increasing family of σ-algebra generated by (r0, Z1, ...., Zk). We
now verify the following assumptions of the theorem stated in section 5.1 of Benveniste
et al. (2012):

1. for any positive measurable function g defined on Z × R we have
E [g(Zk+1, rk)|Fk] = Erk

[g(Z, rk)] .
2. there exists C > 0, such that for every r ∈ R Er

[
Hπr (Z, r)2] ≤ C(1 + r2)

3. there exists r∗ > 0 such that for every r ∈ R \ {r∗}:

(r − r∗)h(r) < 0

4.
∑

γk = +∞ and
∑

γ2
k < +∞

The first point is straightforward considering the sampling scheme of equation (14).
We now consider point 2):

Er

[
Hπr (Z, r)2] =

∫
Z

(
f0(z) − rf1(z)

πr(z)

)2
πr(z)µ(dz)

=
∫

Z

(f0(z) − rf1(z))2

πr(z) µ(dz)

=
∫

Z
|Hπr (z, r)||f0(z) − rf1(z)|µ(dz)

≤
∫

Z
|Hπr (z, r)|f0(z)µ(dz) +

∫
Z

|Hπr (z, r)|f1(z)|r|µ(dz)

≤ c0E0 [|Hπr (z, r)|] + |r|c1E1 [|Hπr (z, r)|]
≤ C̃(1 + r2)

thanks to Assumption 1.
Point 3) is straightforward as h(r) = c1(r∗ − r). Finally point 4) is implied by

Assumption 3. □

A.2 Proof of Proposition 2
We apply the central theorem for Robbins-Monro algorithms (Duflo (1996) chapter
4) to prove Proposition 2. The additional assumptions to verify are:

1. There exists a neighborhood U of r∗ such that the function h is continuously
differentiable on U and for all r ∈ U , h′(r) < 0 .

28



2. There exists Γ > 0, such that almost surely:

lim
k→+∞

E
[(

Hπrk
(Zk+1, rk) − h(rk)

)2
|Fk

]
= Γ

3. There exists δ > 0 such that

sup
k

E
[(

Hπrk
(Zk+1, rk) − h(rk)

)2+δ

|Fk

]
< +∞

4. There exist 1
2 < ϵ < 1, a > 0, b > 0 such that the sequence of step sizes (γk) is of

the form γk = a
b+kϵ .

The first point is straightforward as h is linear in r and h′ is constant equal to
−c1 < 0. To prove the second point, let us introduce ξk+1 = Hπrk

(Zk+1, rk) − h(rk)
for all integer k. After some calculation, we get:

E(ξ2
k+1|Fk) = c0E0

[
Hπrk

(Z, rk)
]

− rkc1E1

[
Hπrk

(Z, rk)
]

− h(rk)2

Under Assumptions 1 and 6, the sequence (rk)k converges almost surely to
r∗, h(r∗) = 0, and, applying the dominated convergence theorem, the following
convergence holds almost surely:

lim
k→+∞

E(ξ2
k+1|Fk) = Er∗

[
Hπ∗

r
(Z, r∗)2]

The right hand side term is positive under Assumption 4. Finally we show that
Assumption 5 implies condition 3) using similar calculation and arguments. Assump-
tion 6 corresponds to condition 4).

Applying the central theorem for Robbins-Monro algorithms (Duflo (1996) chapter
4) we get that:

Vsaris(πr∗) = Er∗(Hπr∗ (Z, r∗)2)/c2
1

We then apply Jensen inequality to get the minorization:

Vsaris(πr∗) ≥ (Er∗ [|Hπr∗ (Z, r∗)|])2
/c2

1

=
(∫

Z
|f0(z) − r∗f1(z)|µ(dz)

)2
/c2

1

= r∗2
(∫

Z
|p0(z) − p1(z)|µ(dz)

)2

Moreover the equality case holds in Jensen inequality for πopt
saris(z) ∝ |f0(z) − r∗f1(z)|

which leads to the result. □

A.3 Proof of Proposition 3
This proof follows the lines of the proof of Proposition 1. The only difference is that
the objective function h to nullify is :
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h : r 7→ c0 − rc1

c(r)

that verifies for every r ∈ R, (r − r∗)h(r) = −c1(r−r∗)2

c(r) < 0. The remaining hypothesis
are verified thanks to Assumption 7.
Remark 13. The fact that c(r) is strictly positive for all r is implied by Assumption
7. c(r) = 0 would mean that π̃r(Z) = 0 µ−almost surely.

□

A.4 Proof of Proposition 4
In order to prove this proposition we proceed in two steps. The first step establishes
the central limit theorem, the second step shows that the use of the unnormalized
density π̃opt

r (z) = |f0(z) − rf1(z)| enables to reach the optimal asymptotic variance
V opt

saris.
The first step follows the same lines as the proof of Proposition 2, replacing Assump-
tions 2 and 5 by Assumptions 7 and 8. Assumption 9 ensures the differentiability
of h in a neighborhood U of r∗, and the fact that h′(r∗) ̸= 0. Furthermore,
h′(r∗) = −c0c(r∗)−c′(r∗)(c0−r∗c1)

c(r∗)2 = −c1
c(r∗) . The continuity of c and r 7→ π̃r(z) for every

z are guaranteed by Assumption 1 and the differentiability of h. The central limit
theorem of Duflo (1996) chapter 4 concludes this step, and :

Vext(π̃r∗) = c(r∗)2

c2
1

Er∗

[(
f0(Z) − r∗f1(Z)

π̃r∗(Z)

)2
]

= 1
c2

1
Er∗

[(
f0(Z) − r∗f1(Z)

πr∗(Z)

)2
]

= Vsaris(πr∗)

Let r ∈ R, π̃opt
r : z 7→ |f0(z) − rf1(z)| and copt : r 7→

∫
Z π̃opt

r (z)dz. The second step
proves that π̃opt verifies Assumptions 7, 8 and 9.
First for every r ∈ R and z ∈ Z, the quantity f0(z)−rf1(z)

π̃opt
r (z) is bounded since its absolute

value equals 1, and therefore Assumptions 7 and 8 are verified. The main point to
verify is Assumption 9. This is not straightforward because of the absolute value in
the definition of the copt function. Let r ∈ R, A+

r = {z ∈ Z : f0(z) > rf1(z)} and
A−

r = {z ∈ Z : f0(z) < rf1(z)}. We get

c(r) =
∫

Z
|f0(z) − rf1(z)|µ(dz)

= −
∫

A−
r

(f0(z) − rf1(z)) µ(dz) +
∫

A+
r

(f0(z) − rf1(z)) µ(dz)

= −c0 + rc1 + 2
∫

A+
r

(f0(z) − rf1(z)) µ(dz)
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using Assumption 10, and that for i = 0, 1, ci =
∫

A+
r

fi(z)µ(dz) +
∫

A−
r

fi(z)µ(dz).
To study the differentiability of m : r 7→

∫
A+

r
f0(z) − rf1(z)µ(dz), we consider r0 ∈ R

and ϵ > 0:

m(r0 + ϵ) − m(r0) =
∫

A+
r \A+

r+ϵ

(rf1(z) − f0(z)) µ(dz) − ϵ

∫
A+

r+ϵ

f1(z)µ(dz)

Let study the first term.

A+
r \A+

r+ϵ = {z ∈ Z : rf1(z) < f0(z) ≤ (r + ϵ)f1(z)}
= {z ∈ Z : 0 < f0(z) − rf1(z) ≤ ϵf1(z)}

f1 is µ−almost surely upper-bounded as it is a (unnormalized) density, let f̄1 its
upperbound.

|
∫

A+
r \A+

r+ϵ

rf1(z) − f0(z)µ(dz)| ≤
∫

A+
r \A+

r+ϵ

|rf1(z) − f0(z)|µ(dz)

≤ ϵf̄1µ(A+
r \A+

r+ϵ)

and µ(A+
r \A+

r+ϵ) →
ϵ→0

0 with Assumption 10. The same calculations hold with ϵ < 0
and we get that m is differentiable on R and for every r ∈ R m′(r) = −

∫
A+

r
f1(z)µ(dz)

and finally c is differentiable on R and specifically :

c′(r∗) = c1 − 2
∫

A+
r∗

f1(z)µ(dz)

therefore h is differentiable on R which concludes the proof, as the first part of the
proposition shows that Vext(π̃r∗) = Vsaris(πr∗).

A.5 Proof of Proposition 5
We first derive the expression of Vext(π̃mixt

r∗ ).
We recall the notations: πmixt

r∗ (z) = 1
2 (p0(z) + p1(z)) ∝ f0(z)+r∗f1(z) = π̃mixt

r∗ (z).
We start from the result of Proposition 2:

Vext(π̃mixt
r∗ ) =

∫
Z

(f0(z) − r∗f1(z))2

πmixt
r∗ (z)

µ(dz)/c2
1

= 2r∗2
∫

Z

(p0(z) − p1(z))2

p0(z) + p1(z) µ(dz)

= 2r∗2

(∫
Z

(p0(z) + p1(z))2 − 4p0(z)p1(z)
p0(z) + p1(z) µ(dz)

)
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= 2r∗2
(

2 −
∫

Z

4p0(z)p1(z)
p0(z) + p1(z)µ(dz)

)
= 4r∗2 (1 − Ψ)

using (a − b)2 = (a + b)2 − 4ab for all a and b reals. The result of Proposition 4 also
holds as h(r) = c0−rc1

c0+rc1
verifies Assumption 9.

We then present the main steps to prove the almost sure convergence and the
asymptotic normality of the sequence obtained using Algorithm 3. The analysis of this
procedure follows the same lines as the one of the SARIS and SARIS-ext procedure.
We introduce the notation

H̃(z, r) = f0(z) − rf1(z)
f0(z) + rf1(z)

and we define under Assumption 1, with π = πmixt, the function

h̃(r) = Eπmixt
r∗

(
f0(Z) − rf1(Z)
f0(Z) + rf1(Z)

)
.

After some calculation, we get

h̃′(r∗) = − Ψ
2r∗

and

Γ̃ = Eπmixt
r∗

[(
f0(Z) − r∗f1(Z)
f0(Z) + r∗f1(Z)

)2
]

= (1 − Ψ),

which is positive under Assumption 4. Following the same lines as in the proofs of
Propositions 1 and 2, it is straightforward to check that all the assumptions required
for the consistency and asymptotic normality hold. Applying these results to the
sequence generated by Algorithm 3 leads to the following asymptotic variance V mixt

saris :

V mixt
saris = 4r∗2(1 − Ψ)/Ψ2

The optimal bridge sampling asymptotic variance is given in equation (4) by
V opt

bridge = 4r∗2(Ψ−1 −1) and V mixt
ris = 4r∗2(1−Ψ)/Ψ2 (see for example Chen and Shao

(1997a, Theorem 5.2.)), which concludes the proof.
□
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