High-dimensional variable selection in non-linear mixed-effects models using a stochastic EM spike-and-slab

Marion Naveau ¹*,*² & Maud Delattre ² & Guillaume Kon Kam King ² & Laure Sansonnet 1

¹ Université Paris-Saclay, AgroParisTech, INRAE, UMR MIA Paris-Saclay, France. ² Université Paris-Saclay, INRAE, MaIAGE, France.

- •Analyse observations collected repeatedly on several individuals.
- Individuals with the same overall behaviour but with individual variations.
- Different sources of variability: intra-individual, inter-individual, residual.
- **Fields of application:** pharmacokinetics, biological growth, ...
- Inter-individual variability may be explained by some among a very large number of covariates (*e.g.* genomic data).
- •High-dimensional context: focus on the few most relevant covariates through a variable selection procedure.

1 - Introduction

Mixed-effects models:

Variable selection:

2 - Non-linear mixed-effects model (NLMEM)

For $i \in \{1, \ldots, n\}$ and $j \in \{1, \ldots, J\}$, denoting y_{ij} the response of individual *i* at time

- 1. **Creation of a model collection:** for each $\nu_0 \in \Delta$,
	- ▶ compute the maximum *a posteriori* estimator with a MCMC-SAEM algorithm [1]:

 $\widehat{\Theta}_{\nu_0}^{MAP} = \operatorname*{argmax}_{\Omega \subseteq \Lambda}$ Θ*∈*Λ *π*(Θ*|y*) \blacktriangleright estimate $\hat{\delta}$ to find good models with high posterior probability [2]: $\hat{\delta} = \text{argmax}$ *δ* $P(\delta | \hat{\Theta}_{\nu_0}^{MAP})$ such as $\hat{\delta}_{\ell} = 1 \Longleftrightarrow P(\delta_{\ell} = 1 | \hat{\Theta}_{\nu_0}^{MAP}) \ge 0.5$ $\sqrt{ }$ $\overline{}$ \mathcal{L}

procedure with $\pi(\varphi|y, \Theta^{(k)})$ for target distribution, • **SA-step (Stochastic Approximation):** compute *∼* $Q_2(\alpha, \Theta^{(k)})$ and $Q_{1,k+1}(\theta)$, approxi- *∼* $\overline{\mathbf{r}}$ $\overline{}$

⇐⇒ Define *S* $S_{\nu_0} =$ $\ell \in \{1, \ldots, p\}$ $\overline{}$ $\overline{}$ $\overline{}$ $|(\widehat{\beta}_{\nu_0}^{MAP})_{\ell}| \geq s_{\beta}(\nu_0, \nu_1, \widehat{\alpha}_{\nu_0}^{MAP})$ *ΜΑΡ*)

$$
\begin{cases}\ny_{ij} = g(\varphi_i, \psi, t_{ij}) + \varepsilon_{ij} , \varepsilon_{ij} \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, \sigma^2), \\
\varphi_i = \mu + {}^t \beta V_i + \xi_i , \xi_i \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, \Gamma^2),\n\end{cases} \tag{1b}
$$

2. **Select the "best" model** among (*S* $S_{\nu_0}\rangle_{\nu_0 \in \Delta}$ by a fast criterion, *e.g.* eBIC [3]:

 $\hat{\nu}_0 = \text{argmin}$ *ν*0*∈*∆ $\sqrt{ }$ $-2 \log (p(y; \hat{\theta}_{\nu_0}^{MLE}))$ $\frac{MLE}{\nu_0})$ $+ B_{\nu_0} \times \log(n) + 2 \log \left(\frac{n}{n} \right)$ *p B^ν*⁰ $\overline{)}$

with B_{ν_0} the number of free parameters in the sub-model S S_{ν_0} .

where

 $\bullet \varphi_i \in \mathbb{R}$: individual parameter, not observed $\bullet g$: **non-linear** function with respect to φ_i

 \bullet ψ \in $\mathbb{R}^q\!\!$: fixed effects, unknown $\bullet \mu \in \mathbb{R}$: intercept, unknown

 \bullet β = ^t $(\beta_1, \ldots, \beta_p) \in \mathbb{R}^p$: covariate fixed effects vector, unknown

Population parameter to be estimated: $\theta = (\mu, \beta, \psi, \sigma^2, \Gamma^2)$

3. **Return** *S* $S_{\hat{\nu}_0}.$

 $\sqrt{2}$ Rocková, V. and George, E. I. (2014). EMVS: The EM approach to Bayesian variable selection. Journal of the American Statistical Association.

3 - Aim and contribution

- **Aim:** Identify the most relevant covariates to characterise inter-individual variability, *i.e.* identify the non-zero components of *β*.
- **Main difficulties:** non-explicit likelihood and high-dimensional problem.
- •**Proposed approach:** Association of a Bayesian **spike-and-slab prior** for variable selection with **MCMC-SAEM** algorithm (stochastic version of EM) for inference [4].

4 - Bayesian hierarchical model

*** Observations:** $y = (y_{ij})_{i,j}$

- ***** Parameters:
- \bullet Fixed hyperparameters: ν_0 , ν_1 , ...

5 - Method

Idea: we could choose ν_0 small, deduced from a practitioner chosen threshold for "negligible" covariate effect. However, we may be interested in exploring different levels of sparsity in *β* by varying the value of ν_0 in a grid Δ .

mation of $\mathbb{E}_{\varphi|y,\Theta^{(k)}}$ $Q_1(y,\varphi,\theta,\Theta^{(k)})$ $\begin{array}{c} \hline \end{array}$ $y, \Theta^{(k)}$, according to:

• **Correlated covariates:** Fairly similar performance but with more false positives and/or false negatives in some correlation scenarios.

• The proposed method is about 20 times faster than a full MCMC implementation.

[1] Kuhn, E. and Lavielle, M. (2004). Coupling a stochastic approximation version of EM with an MCMC procedure. ESAIM: Probability and Statistics.

[3] Chen, J. and Chen, Z. (2008). Extended Bayesian information criteria for model selection with large model spaces. Biometrika. [4] Naveau, M. et al. (2022). Bayesian high-dimensional covariate selection in non-linear mixed-effects models using the SAEM algorithm. arXiv:2206.01012.

(a) $n = 100$ (b) $n = 200$

6 - Regularisation plot and eBIC criterion

Regularisation plot A

eBIC criterion

 t_{ij} and V_i the *p* covariates measured on individual *i*, with $p \gg n$:

Fig. 2: Example of a regularisation plot (A) with eBIC criterion graph (B) for model selection. On (A), the red lines correspond to the selection threshold of the covariates.

 $n = 200, J = 10, p = 500, \Gamma^2 = 200, \sigma^2 = 30, \nu_1 = 12000, \mu = 1200, \beta = \binom{t}{100, 50, 20, 0, \ldots, 0}$

7 - MCMC-SAEM algorithm for computing the MAP

At each step k of this iterative algorithm, the idea is to maximise:

$$
Q(\Theta|\Theta^{(k)}) = \mathbb{E}_{(\varphi,\delta)|(y,\Theta^{(k)})}[\log(\pi(\Theta,\varphi,\delta|y))|y,\Theta^{(k)}]
$$

=
$$
C + \mathbb{E}_{\varphi|y,\Theta^{(k)}} \left[\widetilde{Q}_1(y,\varphi,\theta,\Theta^{(k)}) \middle| y,\Theta^{(k)} \right] + \widetilde{Q}_2(\alpha,\Theta^{(k)})
$$

1. Initialisation: choose $\Theta^{(0)}$ and $Q_{1,0}(\theta) = 0$,

2. Iteration $k \geq 0$:

• S-step (Simulation): simulate $\varphi^{(k)}$ using the result of one iteration of an MCMC

$$
Q_{1,k+1}(\theta)=Q_{1,k}(\theta)+\gamma_k(\tilde{Q}_1(y,\varphi^{(k)},\theta,\Theta^{(k)})-Q_{1,k}(\theta)),
$$

• **M-step (Maximisation):** compute

$$
\theta^{(k+1)} = \underset{\theta \in \Lambda_{\theta}}{\operatorname{argmax}} \ Q_{1,k+1}(\theta) \text{ and } \alpha^{(k+1)} = \underset{\alpha \in [0,1]}{\operatorname{argmax}} \ \tilde{Q}_2(\alpha,\Theta^{(k)}),
$$

3.
$$
\hat{\Theta} = \Theta^{(K)}
$$
, for K large enough,
where $(\gamma_k)_k$ is a step sizes sequence decreasing towards 0 such that $\forall k, \gamma_k \in [0, 1], \sum_k \gamma_k = \infty$ and $\sum_k \gamma_k^2 < \infty$ [1].

8 - Simulation results in a logistic growth model

• **Uncorrelated covariates:**

Fig. 3: Proportion of data-sets on which the proposed method selects the correct model ("Exact"), a model that contains false positives (FP) but not false negatives (FN), FN but not FP, or FP and FN.

9 - Perspectives

•Apply our method to a **real dataset** (in progress).

• Consider a **multidimensional** individual parameter.

• Provide theoretical guarantees: **selection consistency**.

 \bigwedge