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1 - Introduction

Mixed-effects models: Variable selection:

e Analyse observations collected repeatedly on several individuals. e Inter-individual variability may be explained by some among a very large number of

e [ndividuals with the same overall behaviour but with individual variations. covariates (e.g. genomic data).
o Different sources of variability: intra-individual, inter-individual, residual. e High-dimensional context: focus on the few most relevant covariates through a variable
Fields of application: pharmacokinetics, biological growth, ... selection procedure.
2 - Non-linear mixed-effects model (NLMEM) 6 - Regularisation plot and eBIC criterion
Fori € {1,...,n} and j € {1,...,J}, denoting y;, the response of individual ¢ at time A Regularisation plot B eBIC criterion
ti; and V; the p covarlates measured on individual 2, with p >> n: B —— — 13100
( iid.
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where . : o o
e o, ¢ [R: individual parameter, not observed e g: non-linear function with respect to ¢, O 00!
e 1) € R%: fixed effects, unknown ¢ . € R: intercept, unknown
o3 = t(ﬁl, ..., By) € RP: covariate fixed effects vector, unknown 800
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Population parameter to be estimated: ¢ = (u, 5,19, 0°, 1) 0 e gg P e JLIE s WAL S VAT A s
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: : 5 Fig. 2: Example of a regularisation plot (A) with eBIC criterion graph (B) for model selection. On (A), the red lines correspond
3 - A_]_m and COI]_t I']_but 1011 to the selection threshold of the covariates.
n =200, J = 10, p = 500, ['? = 200, 02 = 30, 14 = 12000, x = 1200, 8 = (100, 50, 20,0, ..., 0)

e Aim: Identify the most relevant covariates to characterise inter-individual variability,
1.e. identity the non-zero components of (.

e Main difficulties: non-explicit likelihood and high-dimensional problem. 7T - MCMC-SAEM algorithm 0] computing the MAP

e Proposed approach: Association of a Bayesian spike-and-slab prior for variable selec-
tion with MCMC-SAEM algorithm (stochastic version of EM) for inference |4].

At each step k of this iterative algorithm, the idea is to maximise:

Q(O10M) = E, 5,.0mmlog(m(0, ¢, [y))|y, O]
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4 - Bayesian hierarchical model

& Observations: y = (yy):, 1. Initialisation: choose ©'" and Q1 ¢(6) = 0,

Seta prior % Parameters: 2 Iteration k Z O:
@ Fixed hyperparameters: 1y, 11, ... _ . . - (k) 1qa : -
@ o To be eetimated: © — (6. o) e S-step (Slmulatlon). sbglulate o using the. result of one iteration of an MCMC
procedure with 7(p|y, ©'") for target distribution,
*» Latent variables: Z = (¢, d)

Sk 3Ia:i(a) Q Gaussian prior | |ZG prior|  where ¢ = (;); and § = (0¢)e e SA-step (Stochastic Approximation): compute Q,(cv, ©'*)) and Q) ;1(6), approxi-
PIKe-anda-sia

mation of E, o él(y, 0, 0,0y, " according to:

Bl ~ N (0, diag((1 — 8¢)vo + 8e11))

Gaussian prior | |ZG prior

Y

Ql,/ﬁLl(e) — Ql,k(e) T /Yk(Ql(ya 900{)7 (97 @(k>) o Ql,k(e))a

e M-step (Maximisation): compute

9 = argmax Q1 4.41(0) and o) = argmax ()0, 0)
Dchy ael0,1]

3.0 =05 for K large enough,

where (74, is a step sizes sequence decreasing towards 0 such that V&, v € [0,1], >°, 7% = oo and >, 7& < oo [1].

(P’f-l(p" B, 1'\2) ~ N(ﬂ' + tﬁ%’rﬂ)

yi_’fl((pi: /‘:bs 02) ~ N(g((pi: 1)[): t‘ij): 62)

Fig. 1: Bayesian hierarchical model

5 - Method
Idea: we could choose vy small, deduced from a practitioner chosen threshold for "negligible” 8 - Simulation results in a lOgIStIC gI'OWth model
covariate gffect. However, we may be interested in exploring different levels of sparsity in e Uncorrelated covariates:
3 by varying the value of vy in a grid A. 00 00
1. Creation of a model collection: for each vy € A, __90; _ gg' Result
» compute the maximum a posterior: estimator with a MCMC-SAEM algorithm [1]: f sg: = 70 3 R ot N
P < an =~ 60 ~ FN but not FP
OMAY = argmax 7(O|y) s gg_ 8 50 % FP and FN
' 5 e 1 5 40 5 40 0
» cstimate 0 to find good models with high posterior probability [2]: 2 3 2 30 500
. . . . r 20 a 20 I 2000
0 = argmax P(8]0)4F) such as 6y = 1 <= P(§, = 1|0347) > 0.5 T 10 5000
0 0 0
~ ~ N 200 1000 2000 200 1000 2000
<> Define 5, = {K e {1,...,p} | |(BXAE)] = sp(vo, 11, &%AP)} 2 r2
2. Select the "best” model among (S, ),.en by a fast criterion, e.g. eBIC [3]; (a) n=100 (b) n =200
ﬁO - argmin{ —9 10g (p(y; é% LE )) i BVO % log(n) 19 log (( Bp )) } Fig. 3: Proportion of data-sets on which the proposed method selects the correct model ("Exact”), a model that contains false
HEA h positives (FP) but not false negatives (FN), FN but not FP, or FP and FN.
with B, the number of free parameters in the sub-model 5. e Correlated covariates: Fairly similar performance but with more false positives and /or
3. Return S5;,. false negatives in some correlation scenarios.
e The proposed method is about 20 times taster than a tull MCMC implementation.
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- A e Consider a multidimensional individual parameter.

9 - Perspectives

e Apply our method to a real dataset (in progress).

université e Provide theoretical cuarantees: selection consistency.
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