High-dimensional variable selection in non-linear mixed-effects models using a stochastic EM spike-and-slab

Marion Naveau ^{1,2} & Maud Delattre ² & Guillaume Kon Kam King ² & Laure Sansonnet ¹

¹ Université Paris-Saclay, AgroParisTech, INRAE, UMR MIA Paris-Saclay, France. ² Université Paris-Saclay, INRAE, MaIAGE, France.

1 - Introduction

Mixed-effects models:

- Analyse observations collected repeatedly on several individuals.
- Individuals with the same overall behaviour but with individual variations.
- Different sources of variability: intra-individual, inter-individual, residual.

Fields of application: pharmacokinetics, biological growth, ...

Variable selection:

- Inter-individual variability may be explained by some among a very large number of covariates (e.g. genomic data).
- High-dimensional context: focus on the few most relevant covariates through a variable selection procedure.

2 - Non-linear mixed-effects model (NLMEM)

For $i \in \{1, ..., n\}$ and $j \in \{1, ..., J\}$, denoting y_{ij} the response of individual i at time t_{ij} and V_i the p covariates measured on individual i, with p >> n:

$$\begin{cases} y_{ij} = g(\varphi_i, \psi, t_{ij}) + \varepsilon_{ij} &, \varepsilon_{ij} \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, \sigma^2), \\ \varphi_i = \mu + {}^{t}\beta V_i + \xi_i &, \xi_i \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, \Gamma^2), \end{cases}$$
(1a)

where

- $\bullet \varphi_i \in \mathbb{R}$: individual parameter, not observed $\bullet g$: **non-linear** function with respect to φ_i
- $\psi \in \mathbb{R}^q$: fixed effects, unknown
- $\mu \in \mathbb{R}$: intercept, unknown
- $\beta = {}^{\mathsf{t}}(\beta_1, \dots, \beta_p) \in \mathbb{R}^p$: covariate fixed effects vector, unknown

Population parameter to be estimated: $\theta = (\mu, \beta, \psi, \sigma^2, \Gamma^2)$

3 - Aim and contribution

- Aim: Identify the most relevant covariates to characterise inter-individual variability, i.e. identify the non-zero components of β .
- Main difficulties: non-explicit likelihood and high-dimensional problem.
- Proposed approach: Association of a Bayesian spike-and-slab prior for variable selection with **MCMC-SAEM** algorithm (stochastic version of EM) for inference [4].

4 - Bayesian hierarchical model

Fig. 1: Bayesian hierarchical model

5 - Method

Idea: we could choose ν_0 small, deduced from a practitioner chosen threshold for "negligible" covariate effect. However, we may be interested in exploring different levels of sparsity in β by varying the value of ν_0 in a grid Δ .

- 1. Creation of a model collection: for each $\nu_0 \in \Delta$,
 - \triangleright compute the maximum *a posteriori* estimator with a MCMC-SAEM algorithm [1]:

$$\widehat{\Theta}_{\nu_0}^{MAP} = \underset{\Theta \in \Lambda}{\operatorname{argmax}} \pi(\Theta|y)$$

 \triangleright estimate $\hat{\delta}$ to find good models with high posterior probability [2]:

$$\hat{\delta} = \underset{\delta}{\operatorname{argmax}} P(\delta | \hat{\Theta}_{\nu_0}^{MAP}) \text{ such as } \hat{\delta}_{\ell} = 1 \iff \mathbb{P}(\delta_{\ell} = 1 | \hat{\Theta}_{\nu_0}^{MAP}) \ge 0.5$$

$$\iff \text{Define } \widehat{S}_{\nu_0} = \left\{ \ell \in \{1, \dots, p\} \middle| |(\widehat{\beta}_{\nu_0}^{MAP})_{\ell}| \geq s_{\beta}(\nu_0, \nu_1, \widehat{\alpha}_{\nu_0}^{MAP}) \right\}$$
2. **Select the "best" model** among $(\widehat{S}_{\nu_0})_{\nu_0 \in \Delta}$ by a fast criterion, *e.g.* eBIC [3]:

$$\hat{\nu}_0 = \underset{\nu_0 \in \Delta}{\operatorname{argmin}} \left\{ -2\log\left(p(y; \hat{\theta}_{\nu_0}^{MLE})\right) + B_{\nu_0} \times \log(n) + 2\log\left(\binom{p}{B_{\nu_0}}\right) \right\}$$

with B_{ν_0} the number of free parameters in the sub-model \widehat{S}_{ν_0} .

3. **Return** $S_{\hat{\nu}_0}$.

[1] Kuhn, E. and Lavielle, M. (2004). Coupling a stochastic approximation version of EM with an MCMC procedure. ESAIM: Probability and Statistics.

EMVS: The EM approach to Bayesian variable selection. [2] Rocková, V. and George, E. I. (2014).

Journal of the American Statistical Association

[3] Chen, J. and Chen, Z. (2008). Extended Bayesian information criteria for model selection with large model spaces. Biometrika. [4] Naveau, M. et al. (2022). Bayesian high-dimensional covariate selection in non-linear mixed-effects models using the SAEM algorithm. arXiv:2206.01012.

UNIVERSITÉ PARIS-SACLAY

6 - Regularisation plot and eBIC criterion

Fig. 2: Example of a regularisation plot (A) with eBIC criterion graph (B) for model selection. On (A), the red lines correspond to the selection threshold of the covariates.

$$n = 200, J = 10, p = 500, \Gamma^2 = 200, \sigma^2 = 30, \nu_1 = 12000, \mu = 1200, \beta = {}^{\mathrm{t}}(100, 50, 20, 0, \dots, 0)$$

7 - MCMC-SAEM algorithm for computing the MAP

At each step k of this iterative algorithm, the idea is to maximise:

$$\begin{split} Q(\Theta|\Theta^{(k)}) &= \mathbb{E}_{(\varphi,\delta)|(y,\Theta^{(k)})}[\log(\pi(\Theta,\varphi,\delta|y))|y,\Theta^{(k)}] \\ &= C + \mathbb{E}_{\varphi|y,\Theta^{(k)}} \left[\tilde{Q}_1(y,\varphi,\theta,\Theta^{(k)}) \middle| y,\Theta^{(k)} \right] + \tilde{Q}_2(\alpha,\Theta^{(k)}) \end{split}$$

1. Initialisation: choose $\Theta^{(0)}$ and $Q_{1,0}(\theta) = 0$,

2. Iteration $k \geq 0$:

- S-step (Simulation): simulate $\varphi^{(k)}$ using the result of one iteration of an MCMC procedure with $\pi(\varphi|y,\Theta^{(k)})$ for target distribution,
- SA-step (Stochastic Approximation): compute $Q_2(\alpha, \Theta^{(k)})$ and $Q_{1,k+1}(\theta)$, approximation of $\mathbb{E}_{\varphi|y,\Theta^{(k)}}$ $\stackrel{\sim}{Q}_1(y,\varphi,\theta,\Theta^{(k)}) |y,\Theta^{(k)}|$, according to:

$$Q_{1,k+1}(\theta) = Q_{1,k}(\theta) + \gamma_k(Q_1(y, \varphi^{(k)}, \theta, \Theta^{(k)}) - Q_{1,k}(\theta)),$$

• M-step (Maximisation): compute

$$\theta^{(k+1)} = \underset{\theta \in \Lambda_{\theta}}{\operatorname{argmax}} \ Q_{1,k+1}(\theta) \text{ and } \alpha^{(k+1)} = \underset{\alpha \in [0,1]}{\operatorname{argmax}} \tilde{Q}_{2}(\alpha, \Theta^{(k)}),$$

 $3. \hat{\Theta} = \Theta^{(K)}$, for K large enough,

where $(\gamma_k)_k$ is a step sizes sequence decreasing towards 0 such that $\forall k, \gamma_k \in [0, 1], \sum_k \gamma_k = \infty$ and $\sum_k \gamma_k^2 < \infty$ [1].

8 - Simulation results in a logistic growth model

Fig. 3: Proportion of data-sets on which the proposed method selects the correct model ("Exact"), a model that contains false positives (FP) but not false negatives (FN), FN but not FP, or FP and FN.

- Correlated covariates: Fairly similar performance but with more false positives and/or false negatives in some correlation scenarios.
- The proposed method is about 20 times faster than a full MCMC implementation.

9 - Perspectives

- Apply our method to a **real dataset** (in progress).
- Consider a **multidimensional** individual parameter.
- Provide theoretical guarantees: **selection consistency**.